Franklin County Dam Preliminary Engineering Report: Development of Alternatives to Restore Downstream Slope

FRANKLIN COUNTY WATER DISTRICT

TUESDAY, FEBRUARY 18, 2020

How did we get here?

Your project team

Project Objectives

- Archival document review
- Evaluate restoration alternatives for the Franklin County Dam downstream slope
- Perform environmental review and wetland delineation for proposed dam restoration alternatives

Project Goal: Develop a cost-effective solution to provide long-term dam integrity that is mutually beneficial to all stakeholders of the dam and the reservoir it impounds

Texas Dam Safety Overview

Project Overview

- Archival Document Review
- Dam History
- Piezometer and Drain Data Review
- Recommended Strategic Exploration and Instrumentation Program
- Potential Slope Restoration Concepts

Archival Document Review

- 1967 Design Documents
 - Wisenbaker, Fix, and Associates
 - Trinity Testing Laboratories
- 1980-1981 Slope Stability Evaluation & Investigation
 - Mason-Johnston & Associates
 - Woodward-Clyde Consultants
- 1982 Modifications
 - URS

Archival Document Review, cont'd

- 2003 Slope Maintenance
 - NRS Consulting Engineers
- 2008-2010 Slope Rehabilitation
 - Freese & Nichols
- 2017-2018 Litigation Data
- Inspection Reports
 - USACE
 - TCEQ & Predecessor Agencies

Original Dam Cross-Section

Original Dam Internal Drainage System

Abbreviated Dam History

- July 1970 Impoundment of Lake Cypress Springs begins
- February 1971 Franklin County Dam construction completed
- July 1972 Severe erosion and seepage on downstream slope
- 1976 Sinkhole observed in previous seepage area; surface erosion
- April 1977 Principal spillway vacuum breaking; downstream slope slides; seepage, boils, and migration of soil
- December 1978 Principal spillway inspection reveals joint separation; toe drain outlet cannot be located
- 1978 Construction of Fort Sherman Dam begins (Lake Bob Sandlin
- April 1980 Downstream slope slides; boil

Abbreviated Dam History, cont'd

- June 1980 Seven piezometers installed
- June 1981 Slope stability evaluation determines blanket drain is working; dam stated to be stable
- December 1981 to November 1982 Downstream slope maintenance; filter installed over boil zone
- November 1985 Erosion gullies and tunnels, sink holes, slide
- 1990 to 1994 Inspections revealed that there were sunken/benched areas in riprap on upstream slope; erosion gullies, and slides on downstream slope.
- 1997-1998 Fish screen added to morning glory drop inlet; six new piezometers installed.

Abbreviated Dam History, cont'd

- May 2002 TCEQ inspection notes burrows and slides on downstream slope; wet area south (right) of principal spillway about 75 feet from downstream toe
- September 2005 TCEQ inspection states downstream slope in poor condition with substantial erosion in several areas; slopes ranging from 1.5H:1V to 1H:1V; slides on downstream slope; seepage at both downstream abutments; standing marsh at north end of downstream slope; seepage at south end of downstream area near principal spillway
- July 2008 Slope rehabilitation construction plans approved
- April 2010 Rehabilitation completed

2010 Dam Modifications

ilename.ppt/

2010 Dam Modifications - Drain Details

Abbreviated Dam History, cont'd

- October 2011 TCEQ inspection notes erosion holes and tunnels on north end of downstream slope; seepage at outlet headwall
- May 2012 Erosions areas linked to dispersive clay
- 2013 More holes and tunnels develop on downstream slope; focus on dispersive soils
- May 2018 TCEQ inspection notes that downstream slope is in poor condition; numerous holes and tunnels; toe drain outlet flap valves not opening frequently enough; erosion on both slopes and downstream contact points; seepage at both ends of downstream slope

Downstream Slope Erosion

- Dispersive soils
- Crack Development
 - Drying
 - Differential settlement
 - Shear displacement
- Seepage
 - Insufficient foundation cutoff
 - Absence of impermeable foundation layer in right abutment
 - Along spillway conduit (no core material or filter around conduit)

Review of Instrumentation Data

- History of dam includes an incomplete account of the installation and abandonment/removal of piezometers
- Current piezometer data limited to six piezometers
 - Three (3) located along the downstream edge of the dam crest
 - Three (3) located along the upstream side of the access road/berm on the downstream slope

-ilename.ppt/20

Review of Piezometer Data

Filename nnt/

Review of Piezometer Data

Franklin County Dam Piezometer Measurements

ilename.ppt/23-

Review of Drain Discharge Data

- Data for fourteen (14) drain outlets reviewed
- Data was limited to "yes" or "no" which refers to whether or not water was observed to be discharging from a given drain outlet
- Change in characterization from "yes" to "no" is episodic

Original Construction Plans – Highlighted Items

- Cracking of embankment materials
- Uncontrolled seepage
 - Lack of chimney or vertical drainage system
 - Lack of filter around toe drain collector
- Inability to observe drain discharges due to presence of Lake Bob Sandlin
- Degradation of foundation materials and potential migration of foundation soils due to seepage

Slope Modification Plans – Highlighted Items

- New or supplemental drainage system may not be sufficient to capture seepage through the existing embankment
- Geotextile fabric (FEMA states geotextile should not be used for critical applications) will likely clog over time and reduce the effectiveness of the drainage system
- Are six piezometers adequate to monitor a structure of this length? The distance between piezometers increases the probability of developing seepage issues going unnoticed

Recommended strategic exploration and instrumentation program

- Install additional piezometers and other monitoring instrumentation
- Collect geotechnical data and samples during piezometer installation
- Collect samples from downstream slope materials to evaluate potential for future dispersive soil activity
- Perform preliminary engineering analyses

Proposed Piezometer Locations

-ilename.ppt/2

Proposed Piezometer Locations

Proposed Piezometer Locations

Perform interim surficial repairs to downstream slope to facilitate maintenance

- Erosion holes pose significant challenges to maintenance of dam
- Options for filling these holes will be developed and evaluated based on data gathered during strategic exploration and instrumentation program

Potential Recommended Course of Action

- Remove and replace the materials associated with the 2008-2010 slope modifications
 - Augment the removed materials with lime and place the augmented soil as engineered fill
 - Or, reconstruct the embankment utilizing non-dispersive soils from an acceptable borrow source
- In conjunction with replacement of embankment soils, install a chimney filter/drain between the original downstream slope and the new soil embankment

Existing Embankment Profile

Option 1 Profile

Option 1 Advantages

- Ability to re-use current material
- Reduces the amount of additional material that would need to be identified and tested
- Lime-treatment is a proven method for remediating dispersive soils

Option 1 Disadvantages

- The lime-treatment process can be very dusty
- Lime-treated soils can impede the ability to establish permanent turf
- Additional topsoil thicknesses are recommended over areas associated with the lime-treatment process to facilitate the establishment of adequate vegetative cover

Option 2 Profile

Option 2 Advantages

- Favorable process for removing and disposing of the soils placed during the slope modification (nearby original borrow site)
- Avoids lime-treatment process
- Topsoil thickness to facilitate turf establishment would not be as thick as the amount required for lime-treated areas

Option 2 Disadvantages

- Need to identify a large quantity of non-dispersive soils
- Potentially long haul distance to import non-dispersive soil material
- Depending on depths of non-dispersive borrow soils, larger disturbed areas would need to be re-vegetated

Drainage System Modifications

- For all alternatives, an adequate internal drainage system is recommended
 - Chimney drain
 - Adequate filter
 - Sufficient outlets
- Due to concerns related to the potential for latent defects in the original construction, an adequate internal drainage system is critical to the long-term performance of the dam

Environmental Evaluation by Arroyo

- Desktop review:
 - Threatened and endangered species review
 - Jurisdictional waters and wetlands review
 - Historical / archeological area review
 - Permitting requirements and agency coordination
- Wetland determination and delineation

Identified Wetlands

ename nnt/4

Identified Wetlands

ename.ppt/45

Recommended Strategic Environmental Plan

- Section 404 Permit required regardless of the dam restoration alternative selected
- Identified approximately 5.5 acres of wetlands in proximity of the project boundaries
- Additional efforts to be fully defined include:
 - Possible additional wetland determination and delineation
 - Critical habitat survey for threatened and endangered species
 - Coordination with THC to address any archeological concerns

-

Thank you for your time

Chimney Drain

